edexcel 쁯

Mark Scheme (Results)
Summer 2013

International GCSE
Physics (4PHO) Paper 2PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036620
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question number	Answer	Notes	Marks	
1 (a)	Aactivity (b)	A	alpha particle	
(c)	B	beta particle		1
(d)	A	alpha particle		1
			1	

Question number	Answer	Notes	Marks
2 (a)	B		1
(b) (i)	\#1. states principle of moments ; \#2. moment $=$ force X (perpendicular) distance from pivot: \#3. calculates one moment about either A or B; \#4. takes moments at B; e.g. moments clockwise $=$ moments anticlockwise - moment $=$ weight \times distance - $\quad 500 \times 1$ - $1 \times 500=\mathrm{Ax} 2$	Ignore bald '500/2 = 250' Accept for \#2: in words or in recognisable symbols or in numbers from the diagram Accept qualitative alternative for last 2 marking points: ' 2 forces so divide weight in half' OWTTE $=1$ mark if then qualified by distance consideration $=2$ marks	4
(ii)	Upward Force at point B 250(N);	allow arrow for clockwise or anticlockwise	1

Question number	Answer	Notes	Marks
(c) \quad i	Arrow down from painter; (vertical, below feet) Both forces increase; Force at B larger than force at $A / R A$;	ignore: - both moments increase - 'force B is larger'	1
		Total	9

Question number	Answer	Notes	Marks
3 (a) i	Any ONE sensible suggestion from ensuring good contact; increasing friction; increasing pressure; ii	Keep a fair test / controlled variable; allow: to prevent slipping sideways make it easier to control	1

Question number	Answer	Notes	Marks
$3 \text { (b) (i) }$ (ii)	(Type of) surface(s); 4.5;	do not accept: - a (single) named surface - type of block - material of block	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(iii) (Average) force in N	Axes labelled- quantity and unit; Linear scale such that longest bar occupies at least half the grid; Plotting---ignore order of bars 5 bars correctly plotted; ; If only 3 bars correctly plotted allow 1 mark for plotting	allow force (N) force/N tolerance is $+/-0.5$ small sq allow ecf from table ALL data plotted correctly as floating "x's" gets only one mark for plotting Reject both plotting marks if a line graph is drawn (only scale and axes marks are available in this case)	4

Question number	Answer	Notes	Marks
3 (c)	Any two of the following five ideas: \#1 different experimental set-up; e.g. - different masses/weights - different kind of wooden block - different speed of pull \#2 variable friction; e.g. - the surfaces were not uniformly smooth - the wooden block did not move evenly across the surface \#3 errors in the force meter reading; e.g. - errors recording the force on the N -meter - faulty scale on N -meter - zero errors / different ranges of N -meters used - different angle of N -meter \#4 different contact; e.g. - the weights on the block may not have been evenly placed on the block - the block was not pressed down onto the surface evenly \#5 friction reduces as the experiment progresses; e.g. - the wooden block becomes smoother as the experiment proceeds - it moves over the surface more easily as the experiment progresses - lubricant on block	I gnore: - unqualified 'broken Nmeter' - human error - 'strength of pull' - anomalous results - surface area of surface	2

Question number	Answer	Notes	Marks
3 (d)	Any two from: Pressure less; Area larger; Use of formula $P=F / A$;	Load is the same/wood is thinner	2
(e)	Any TWO sensible suggestions; ; e.g. place a lubricant between the two surfaces make the surfaces smoother decrease weights /masses on block	allow: named lubricants change the surfaces so that are not so rough reduce the area (of contact) block	2
		Total	14

Question number	Answer	Notes	Marks
4 (a)	C Silver		1
(b)	Must be in the correct context Any two from: - negative charge moves or electrons move; - (charge moves through wire) from plate $B /$ to lifting sheet A; - therefore produces unbalanced /net charge on A / B;	Do not award marks for repeat of stem Accept: lifting sheet for A, metal plate for B charge is not enough for first MP A has gained electrons / B has lost electrons for 2 marks Ignore references to 'poles' 'current' Reject ideas about positive charge moving	2

Question number	Answer	Notes	Marks
4 (c)	Must be in the correct context Any two from - (top of) dust becomes positive; - negative charge on lifting sheet A attracts dust; - force of attraction > weight of dust;	Ignore unqualified 'opposite charges attract' allow an answer in terms of charge separation e.g. induced charge on dust ('top' positive 'bottom' negative)	2
(d)	Answers must be in the context of the stream of water and charged rod - the water (molecules) have a charge; - opposite charges attract / like charges repel;	do not credit repeat of stem allow (negatively) charged rod attracts (positively) charged water	2
		Total	7

Question number (a) (i)	Answer	idea that Energy source which cannot be replaced;	allow: 5	

Question number	Answer	Notes	Marks
5 (b) (i)	AT WIND FARM: any one from - Step-up transformer used at the wind farm; - voltage increased (for transmission); DURING TRANSMISSION: any one from - transmitted at (high voltage and) low current; - no/little energy is wasted during transmission; AT CITY END: any one from - Step down transformer at 'other end'/OWTTE; - voltage reduced to $230 \mathrm{~V} /$ for safety/for homes;	allow: description of a transformer Allow small voltage loss in transmission	3

Question number	Answer	Notes	Marks
5 (b) (ii)	Answer to a maximum of SIX marks to include: up to 4 ideas from advantages and up to 4 ideas from disadvantages Annotate with ticks / underlining advantages 1. Renewable energy resource; 2. No /little carbon emission or air pollution OR will not add to global warming OR little pollution; 3. Source of energy is free OR low running costs; 4. Brings employment/construction to some remote areas OR good for the local economy; 5. Lots of energy available OR abundant source OR wind farm can generate large amounts of electricity; 6. wind turbines can be more efficient than conventional power stations; disadvantages 1. Unsightly/ugly OR can damage views/ blight landscapes / local people may find them an intrusion; 2. Can be noisy/ causes noise pollution; 3. Only work when the wind blows/ above certain wind speed OR no constant output of electricity OR not reliable; 4. Each generator can only generate a small amount of electricity OR many are needed to supply the amount of electricity required for a city; 5. Costly to construct / maintain; 6. can only be placed in certain areas OR require large areas;	If a single word list, penalise by ONE mark accept suitable/sensible alternatives ignore: - environmentally friendly - cheaper than fossil fuels - kills birds / harming animals - unqualified 'expensive' /'high costs' - safer - carbon-neutral - unqualified 'more efficient'/ 'high efficiency'	6
		Total	11

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	Momentum $=\mathrm{mxv}$; Substitution into correct equation; Evaluation; consistent unit; E.g. Momentum $=0.1 \times 3$ Solution 0.3 $\mathrm{kg} \mathrm{~m} / \mathrm{s}$ Momentum is conserved	in words or in recognisable symbols Allow: use of $\mathrm{g}(\rightarrow 300)$ but unit must match allow: - $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ - Ns ignore: because it has the same mass and velocity any discussion of energy	1 3
(b)	prediction: Two balls at the opposite end of the cradle move up/away; (balls D and E rise up) any one sensible reason: - idea that momentum is still conserved in this collision - total momentum of the system is constant - there is twice the momentum of one ball so the momentum is transferred to two balls;	Allow: E moves off with $2 v$ ignore 'the other balls remain still' - inelastic (collisions) - mention of energy	2
		Total	7

Question number	Answer	Notes	Marks
7 (a)	standard definition of wavelength; e.g. - distance between two points on a wave/ two peaks/ two troughs - distance between each wavefront - distance travelled by wave in one time period	allow: from clear diagram crest for peak ignore: - 'the length of a wave' - 'distance taken for 1 cycle' - distance between one wave and the next one	1
7 (bi)	Speed of wave $=$ frequency \times wavelength;	allow: in any rearrangement $v=f . \lambda$	1
(bii)	substitution into any form of the equation ; evaluation; e.g. $3(\mathrm{~m} / \mathrm{s})=1.5(\mathrm{~Hz}) \times \lambda$ $(\lambda)=2(m)$;	accept for 1 mark $\frac{3}{1.5}$	2

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG036620 Summer 2013

For more information on Edexcel qualifications, please visit our website

Rewarding Learning

